GPU Accelerated Molecular Surface Computing

نویسندگان

  • Byungjoo Kim
  • Ku-Jin Kim
  • Joon-Kyung Seong
چکیده

A method is presented for computing the SES (solvent excluded surface) of a protein molecule in interactive-time based on GPU (graphics processing unit) acceleration. First, the offset surface of the van der Waals spheres is sampled using an offset distance d that corresponds to the radius of the solvent probe. The SES is then constructed by extracting the surface at distance d from the sample points. For interactive-time computing, two space partitioning schemes are used, a voxel map and kd-tree, with data parallel schemes accelerated by GPU. In experiments using an average 1,848 atoms, a SES with a resolution of 1/2 ×1/2× 1/2 of the original bounding box is obtained in 66.53ms on average.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Visualization of Gaussian Density Surfaces for Molecular Dynamics and Particle System Trajectories

We present an efficient algorithm for computation of surface representations enabling interactive visualization of large dynamic particle data sets. Our method is based on a GPU-accelerated data-parallel algorithm for computing a volumetric density map from Gaussian weighted particles. The algorithm extracts an isovalue surface from the computed density map, using fast GPU-accelerated Marching ...

متن کامل

Architecture-Aware Optimization on a 1600-core Graphics Processor

The graphics processing unit (GPU) continues to make significant strides as an accelerator in commodity cluster computing for high-performance computing (HPC). For example, three of the top five fastest supercomputers in the world, as ranked by the TOP500, employ GPUs as accelerators. Despite this increasing interest in GPUs, however, optimizing the performance of a GPU-accelerated compute node...

متن کامل

A GPU-accelerated Direct-sum Boundary Integral Poisson-Boltzmann Solver

In this paper, we present a GPU-accelerated direct-sum boundary integral method to solve the linear Poisson-Boltzmann (PB) equation. In our method, a well-posed boundary integral formulation is used to ensure the fast convergence of Krylov subspace based linear algebraic solver such as the GMRES. The molecular surfaces are discretized with flat triangles and centroid collocation. To speed up ou...

متن کامل

GPU-accelerated Hausdorff distance computation between dynamic deformable NURBS surfaces

We present a parallel GPU-accelerated algorithm for computing the directed Hausdorff distance from one NURBS surface to another, within a bound. We make use of axis-aligned bounding-box hierarchies that bound the NURBS surfaces to accelerate the computations. We dynamically construct as well as traverse the bounding-box hierarchies for the NURBS surfaces using operations that are optimized for ...

متن کامل

Compiler-based code generation and autotuning for geometric multigrid on GPU-accelerated supercomputers

GPUs, with their high bandwidths and computational capabilities are an increasingly popular target for scientific computing. Unfortunately, to date, harnessing the power of the GPU has required use of a GPU-specific programming model like CUDA, OpenCL, or OpenACC. As such, in order to deliver portability across CPU-based and GPU-accelerated supercomputers, programmers are forced to write and ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011